NASA Ocean Color Research Team Meeting 14-16 April, 20-04

Constraining Model Parameterizations of our governing equations for spectral reflectance and primary production:

A 10 year concept

Greg Mitchell, Scripps Institution of Oceanography

Ocean Optics Protocols for SeaWiFS Validation, Revision 1

Table 1. Required observations for initialization and system calibration for satellite product verification and radiative transfer (also ongoing calibration and atmospheric algorithm validation studies) and bio-optical algorithm development and validation.

	Product Verification	Radiative Transfer	Bio-optical Algorithms	
Primary Optical Measurements				
Incident Spectral Irradiance, $E_d(0^-, \lambda)$	×	×	×	
Downwelled Spectral Irradiance, $E_d(z, \lambda)$	×	×	×	
Upwelled Spectral Radiance, $L_u(z, \lambda)$	×	×	×	
Spectral Solar Atmospheric Transmission, $\tau_s(\lambda)$	×	×	×	
Submerged Upwelled Radiance Distribution, $L(z, \theta, \phi)$	×	×	×	
Spectral Sky Radiance Distribution	×	×	×	
Upwelled Spectral Irradiance, $E_u(z,\lambda)$		×	×	
Calculated or Derived Variables				
Water-leaving Radiance, $L_W(0^-, \lambda)$	×	×	×	
Attenuation Coefficient Downwelled Irradiance, $K_d(z, \lambda)$	×	×	×	
Attenuation Coefficient Upwelled Radiance, $K_L(z,\lambda)$	×	×	×	
Spectral Reflectance, $R_L(z,\lambda)$	×	×	×	
Ambient Properties				
Sea and Sky State Photographs	×	×	×	
Wind Velocity	×	×	×	
In Situ Fluorescence Profiles		×	×	
Aerosol Samples		×	×	
Temperature and Salinity Profiles			×	
Secchi Depth			×	

	<u> </u>	L		
Primary Biogeochemical Measurements				
Phytoplankton Pigments (HPLC Technique)	×	×		
Phytoplankton Pigments (Fluorometric Technique)	×	×		
Total Suspended Material (TSM) Concentration	×	×		
Colored Dissolved Organic Material (CDOM)	×	×		
Inherent Optical Properties				
Spectral Beam Attenuation Coefficient, $c(z, \lambda)$	×	×		
Spectral Absorption Coefficient, $a(z, \lambda)$	×	×		
Spectral Backscattering Coefficient, $b_b(z, \lambda)$	×	×		
Spectral Volume Scattering Function, $\beta(z, \lambda, \theta)$	×	×		
Red Beam Attenuation, $c(z, 660 \text{ nm})$	×	×		
Algorithm Specific Research Measurements				
Airborne Fluorescence and Radiances	×	×		
Coccolith Concentration		×		
Detritus Absorption Coefficient	×	×		
Humic and Fulvic Acids		×		
Inorganic Suspended Material		×		
Organic Suspended Material		×		
Particle Absorption Coefficient	×	×		
Particle Fluorescence		×		
Particle Size Spectra	×	×		
Particulate Organic Carbon (POC)		×		
Particulate Organic Nitrogen (PON)		×		
Phycobilipigments Concentration		×		
Phytoplankton Species Counts		×		
Primary Productivity (¹⁴ C)		×		
Total Dissolved Organic Carbon (DOC)		×		

 $[\]times$ = Needed for the indicated effort.

Strategy To make comprehensive global measurements in support of ocean color satellite applications for

- phytoplankton pigments
- •Carbon and nitrogen
- •suspended sediments
- •Mineral content
- •UV-visible attenuation coefficients
- primary production

$$\begin{split} R_{rs}(\lambda) &= Lu \ / Ed \\ R_{rs}(\lambda) &= f/Q \ bb \ (\lambda) \ / a \ (\lambda) + bb \ (\lambda) \\ P &= chl \int a_{ph}^* (\lambda) \ E \ (\lambda) \ \varphi \ (\lambda) \\ \varphi and \ a_{ph}^* \ are \ functions \ of \ E, \ N, \ T; \ \varphi_{max} = \alpha \ / \ a_{ph}^* \end{split}$$

Above requires ~5-6 people at sea Atmospheric transmittance and aerosol work requires ~2 people at sea

Need critical mass of 7-10 people on routine cruises and to strategic regions of the world's oceans

Update Table 1 of Ocean Optics Protocols
Work implied requires multi PI teams working together
Define funding levels and multi-PI teams
Define ship opportunities:

Routine cruises

October 2004 R/V Revelle CalCOFI

Future CalCOFI?

HOTS/BATS

Global cruises to strategically important provinces

WOCE repeat surveys

AMLR/Southern Ocean

Arctic??

Heavy aerosols western Pacific?

etc.